Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 8, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172911

RESUMO

Dramatic improvements in measuring genetic variation across agriculturally relevant populations (genomics) must be matched by improvements in identifying and measuring relevant trait variation in such populations across many environments (phenomics). Identifying the most critical opportunities and challenges in genome to phenome (G2P) research is the focus of this paper. Previously (Genome Biol, 23(1):1-11, 2022), we laid out how Agricultural Genome to Phenome Initiative (AG2PI) will coordinate activities with USA federal government agencies expand public-private partnerships, and engage with external stakeholders to achieve a shared vision of future the AG2PI. Acting on this latter step, AG2PI organized the "Thinking Big: Visualizing the Future of AG2PI" two-day workshop held September 9-10, 2022, in Ames, Iowa, co-hosted with the United State Department of Agriculture's National Institute of Food and Agriculture (USDA NIFA). During the meeting, attendees were asked to use their experience and curiosity to review the current status of agricultural genome to phenome (AG2P) work and envision the future of the AG2P field. The topic summaries composing this paper are distilled from two 1.5-h small group discussions. Challenges and solutions identified across multiple topics at the workshop were explored. We end our discussion with a vision for the future of agricultural progress, identifying two areas of innovation needed: (1) innovate in genetic improvement methods development and evaluation and (2) innovate in agricultural research processes to solve societal problems. To address these needs, we then provide six specific goals that we recommend be implemented immediately in support of advancing AG2P research.


Assuntos
Agricultura , Fenômica , Estados Unidos , Genômica
2.
PLoS Biol ; 21(12): e3002397, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38051702

RESUMO

Since they emerged approximately 125 million years ago, flowering plants have evolved to dominate the terrestrial landscape and survive in the most inhospitable environments on earth. At their core, these adaptations have been shaped by changes in numerous, interconnected pathways and genes that collectively give rise to emergent biological phenomena. Linking gene expression to morphological outcomes remains a grand challenge in biology, and new approaches are needed to begin to address this gap. Here, we implemented topological data analysis (TDA) to summarize the high dimensionality and noisiness of gene expression data using lens functions that delineate plant tissue and stress responses. Using this framework, we created a topological representation of the shape of gene expression across plant evolution, development, and environment for the phylogenetically diverse flowering plants. The TDA-based Mapper graphs form a well-defined gradient of tissues from leaves to seeds, or from healthy to stressed samples, depending on the lens function. This suggests that there are distinct and conserved expression patterns across angiosperms that delineate different tissue types or responses to biotic and abiotic stresses. Genes that correlate with the tissue lens function are enriched in central processes such as photosynthetic, growth and development, housekeeping, or stress responses. Together, our results highlight the power of TDA for analyzing complex biological data and reveal a core expression backbone that defines plant form and function.


Assuntos
Magnoliopsida , Magnoliopsida/genética , Plantas/genética , Estresse Fisiológico/genética , Folhas de Planta/genética , Expressão Gênica , Regulação da Expressão Gênica de Plantas/genética
3.
Plant Physiol ; 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37925649

RESUMO

Maize (Zea mays) production systems are heavily reliant on the provision of managed inputs such as fertilizers to maximize growth and yield. Hence, the effective use of N fertilizer is crucial to minimize the associated financial and environmental costs, as well as maximize yield. However, how to effectively utilize N inputs for increased grain yields remains a substantial challenge for maize growers that requires a deeper understanding of the underlying physiological responses to N fertilizer application. We report a multi-scale investigation of five field-grown maize hybrids under low or high N supplementation regimes that includes the quantification of phenolic and prenyl-lipid compounds, cellular ultrastructural features, and gene expression traits at three developmental stages of growth. Our results reveal that maize perceives the lack of supplemented N as a stress and, when provided with additional N, will prolong vegetative growth. However, the manifestation of the stress and responses to N supplementation are highly hybrid-specific. Eight genes were differentially expressed in leaves in response to N supplementation in all tested hybrids and at all developmental stages. These genes represent potential biomarkers of N status and include two isoforms of Thiamine Thiazole Synthase involved in vitamin B1 biosynthesis. Our results uncover a detailed view of the physiological responses of maize hybrids to N supplementation in field conditions that provides insight into the interactions between management practices and the genetic diversity within maize.

4.
Nat Commun ; 14(1): 6904, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903778

RESUMO

Genotype-by-environment (G×E) interactions can significantly affect crop performance and stability. Investigating G×E requires extensive data sets with diverse cultivars tested over multiple locations and years. The Genomes-to-Fields (G2F) Initiative has tested maize hybrids in more than 130 year-locations in North America since 2014. Here, we curate and expand this data set by generating environmental covariates (using a crop model) for each of the trials. The resulting data set includes DNA genotypes and environmental data linked to more than 70,000 phenotypic records of grain yield and flowering traits for more than 4000 hybrids. We show how this valuable data set can serve as a benchmark in agricultural modeling and prediction, paving the way for countless G×E investigations in maize. We use multivariate analyses to characterize the data set's genetic and environmental structure, study the association of key environmental factors with traits, and provide benchmarks using genomic prediction models.


Assuntos
Interação Gene-Ambiente , Zea mays , Zea mays/genética , Genótipo , Fenótipo , Genômica/métodos
5.
BMC Res Notes ; 16(1): 219, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710302

RESUMO

OBJECTIVES: This release note describes the Maize GxE project datasets within the Genomes to Fields (G2F) Initiative. The Maize GxE project aims to understand genotype by environment (GxE) interactions and use the information collected to improve resource allocation efficiency and increase genotype predictability and stability, particularly in scenarios of variable environmental patterns. Hybrids and inbreds are evaluated across multiple environments and phenotypic, genotypic, environmental, and metadata information are made publicly available. DATA DESCRIPTION: The datasets include phenotypic data of the hybrids and inbreds evaluated in 30 locations across the US and one location in Germany in 2020 and 2021, soil and climatic measurements and metadata information for all environments (combination of year and location), ReadMe, and description files for each data type. A set of common hybrids is present in each environment to connect with previous evaluations. Each environment had a collaborator responsible for collecting and submitting the data, the GxE coordination team combined all the collected information and removed obvious erroneous data. Collaborators received the combined data to use, verify and declare that the data generated in their own environments was accurate. Combined data is released to the public with minimal filtering to maintain fidelity to the original data.


Assuntos
Alocação de Recursos , Zea mays , Zea mays/genética , Estações do Ano , Genótipo , Alemanha
6.
BMC Res Notes ; 16(1): 148, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37461058

RESUMO

OBJECTIVES: The Genomes to Fields (G2F) 2022 Maize Genotype by Environment (GxE) Prediction Competition aimed to develop models for predicting grain yield for the 2022 Maize GxE project field trials, leveraging the datasets previously generated by this project and other publicly available data. DATA DESCRIPTION: This resource used data from the Maize GxE project within the G2F Initiative [1]. The dataset included phenotypic and genotypic data of the hybrids evaluated in 45 locations from 2014 to 2022. Also, soil, weather, environmental covariates data and metadata information for all environments (combination of year and location). Competitors also had access to ReadMe files which described all the files provided. The Maize GxE is a collaborative project and all the data generated becomes publicly available [2]. The dataset used in the 2022 Prediction Competition was curated and lightly filtered for quality and to ensure naming uniformity across years.


Assuntos
Genoma de Planta , Zea mays , Fenótipo , Zea mays/genética , Genótipo , Genoma de Planta/genética , Grão Comestível/genética
7.
BMC Genom Data ; 24(1): 29, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37231352

RESUMO

OBJECTIVES: This report provides information about the public release of the 2018-2019 Maize G X E project of the Genomes to Fields (G2F) Initiative datasets. G2F is an umbrella initiative that evaluates maize hybrids and inbred lines across multiple environments and makes available phenotypic, genotypic, environmental, and metadata information. The initiative understands the necessity to characterize and deploy public sources of genetic diversity to face the challenges for more sustainable agriculture in the context of variable environmental conditions. DATA DESCRIPTION: Datasets include phenotypic, climatic, and soil measurements, metadata information, and inbred genotypic information for each combination of location and year. Collaborators in the G2F initiative collected data for each location and year; members of the group responsible for coordination and data processing combined all the collected information and removed obvious erroneous data. The collaborators received the data before the DOI release to verify and declare that the data generated in their own locations was accurate. ReadMe and description files are available for each dataset. Previous years of evaluation are already publicly available, with common hybrids present to connect across all locations and years evaluated since this project's inception.


Assuntos
Genoma de Planta , Zea mays , Fenótipo , Zea mays/genética , Estações do Ano , Genótipo , Genoma de Planta/genética
8.
Proc Natl Acad Sci U S A ; 120(10): e2216894120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36848555

RESUMO

Drought tolerance is a highly complex trait controlled by numerous interconnected pathways with substantial variation within and across plant species. This complexity makes it difficult to distill individual genetic loci underlying tolerance, and to identify core or conserved drought-responsive pathways. Here, we collected drought physiology and gene expression datasets across diverse genotypes of the C4 cereals sorghum and maize and searched for signatures defining water-deficit responses. Differential gene expression identified few overlapping drought-associated genes across sorghum genotypes, but using a predictive modeling approach, we found a shared core drought response across development, genotype, and stress severity. Our model had similar robustness when applied to datasets in maize, reflecting a conserved drought response between sorghum and maize. The top predictors are enriched in functions associated with various abiotic stress-responsive pathways as well as core cellular functions. These conserved drought response genes were less likely to contain deleterious mutations than other gene sets, suggesting that core drought-responsive genes are under evolutionary and functional constraints. Our findings support a broad evolutionary conservation of drought responses in C4 grasses regardless of innate stress tolerance, which could have important implications for developing climate resilient cereals.


Assuntos
Sorghum , Zea mays , Zea mays/genética , Sorghum/genética , Secas , Grão Comestível/genética , Poaceae
9.
G3 (Bethesda) ; 13(4)2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36625555

RESUMO

Accurate prediction of the phenotypic outcomes produced by different combinations of genotypes, environments, and management interventions remains a key goal in biology with direct applications to agriculture, research, and conservation. The past decades have seen an expansion of new methods applied toward this goal. Here we predict maize yield using deep neural networks, compare the efficacy of 2 model development methods, and contextualize model performance using conventional linear and machine learning models. We examine the usefulness of incorporating interactions between disparate data types. We find deep learning and best linear unbiased predictor (BLUP) models with interactions had the best overall performance. BLUP models achieved the lowest average error, but deep learning models performed more consistently with similar average error. Optimizing deep neural network submodules for each data type improved model performance relative to optimizing the whole model for all data types at once. Examining the effect of interactions in the best-performing model revealed that including interactions altered the model's sensitivity to weather and management features, including a reduction of the importance scores for timepoints expected to have a limited physiological basis for influencing yield-those at the extreme end of the season, nearly 200 days post planting. Based on these results, deep learning provides a promising avenue for the phenotypic prediction of complex traits in complex environments and a potential mechanism to better understand the influence of environmental and genetic factors.


Assuntos
Aprendizado Profundo , Redes Neurais de Computação , Aprendizado de Máquina , Genótipo , Herança Multifatorial
10.
Gigascience ; 112022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35997208

RESUMO

Classical genetic studies have identified many cases of pleiotropy where mutations in individual genes alter many different phenotypes. Quantitative genetic studies of natural genetic variants frequently examine one or a few traits, limiting their potential to identify pleiotropic effects of natural genetic variants. Widely adopted community association panels have been employed by plant genetics communities to study the genetic basis of naturally occurring phenotypic variation in a wide range of traits. High-density genetic marker data-18M markers-from 2 partially overlapping maize association panels comprising 1,014 unique genotypes grown in field trials across at least 7 US states and scored for 162 distinct trait data sets enabled the identification of of 2,154 suggestive marker-trait associations and 697 confident associations in the maize genome using a resampling-based genome-wide association strategy. The precision of individual marker-trait associations was estimated to be 3 genes based on a reference set of genes with known phenotypes. Examples were observed of both genetic loci associated with variation in diverse traits (e.g., above-ground and below-ground traits), as well as individual loci associated with the same or similar traits across diverse environments. Many significant signals are located near genes whose functions were previously entirely unknown or estimated purely via functional data on homologs. This study demonstrates the potential of mining community association panel data using new higher-density genetic marker sets combined with resampling-based genome-wide association tests to develop testable hypotheses about gene functions, identify potential pleiotropic effects of natural genetic variants, and study genotype-by-environment interaction.


Assuntos
Estudo de Associação Genômica Ampla , Zea mays , Marcadores Genéticos , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Zea mays/genética
11.
Methods Mol Biol ; 2539: 159-170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35895203

RESUMO

Phenomics has emerged as the technology of choice for understanding quantitative genetic variation in plant physiology and plant breeding. Phenomics has allowed for unmatched precision in exploring plant life cycles and physiological patterns. As new technologies are developed, it is still vital to follow best practices for designing and planning to be able to fully exploit any experimental results. Here we describe the basic - but sometimes overlooked - considerations of a phenomics experiment to help you maximize the value from the data collected: choosing population and location, accounting for sources of variation, establishing a timeline, and leveraging ground-truth measurements.


Assuntos
Fenômica , Melhoramento Vegetal , Produtos Agrícolas/genética , Genômica/métodos , Fenótipo
12.
Front Genet ; 13: 819849, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368702

RESUMO

Global environmental changes with more extreme episodes of heat waves are major threats to agricultural productivity. Heat stress in spring affects the reproductive stage of maize, resulting in tassel blast, pollen abortion, poor pollination, reduced seed set, barren ears and ultimately yield loss. As an aneamophelous crop, maize has a propensity for pollen abortion under heat stress conditions. To overcome the existing challenges of heat stress and pollen abortion, this study utilized a broad genetic base of maize germplasm to identify superior alleles to be utilized in breeding programs. A panel of 375 inbred lines was morpho-physiologically screened under normal and heat stress conditions in two locations across two consecutive planting seasons, 2017 and 2018. The exposure of pollen to high temperature showed drastic decline in pollen germination percentage. The average pollen germination percentage (PGP) at 35 and 45°C was 40.3% and 9.7%, respectively, an average decline of 30.6%. A subset of 275 inbred lines were sequenced using tunable genotyping by sequencing, resulting in 170,098 single nucleotide polymorphisms (SNPs) after filtration. Genome wide association of PGP in a subset of 122 inbred lines resulted in ten SNPs associated with PGP35°C (p ≤ 10-5), nine with PGP45°C (p ≤ 10-6-10-8) and ten SNPs associated with PGP ratio (p ≤ 10-5). No SNPs were found to be in common across PGP traits. The number of favorable alleles possessed by each inbred line for PGP35°C, PGP45°C, and the PGP ratio ranged between 4 and 10, 3-13 and 5-13, respectively. In contrast, the number of negative alleles for these traits ranged between 2 and 8, 3-13 and 3-13, respectively. Genetic mapping of yield (adjusted weight per plant, AWP-1) and flowering time (anthesis-silking interval, ASI) in 275 lines revealed five common SNPs: three shared for AWP-1 between normal and heat stress conditions, one for ASI between conditions, and one SNP, CM007648.1-86615409, was associated with both ASI and AWP-1. Variety selection can be performed based on these favorable alleles for various traits. These marker trait associations identified in the diversity panel can be utilized in breeding programs to improve heat stress tolerance in maize.

13.
Plant Cell Rep ; 40(9): 1679-1693, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34091722

RESUMO

KEY MESSAGE: Overexpression of Zea mays SOC gene promotes flowering, reduces plant height, and leads to no reduction in grain production per plant, suggesting enhanced yield potential, at least, through increasing planting density. MIKC-type MADS-box gene SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) is an integrator conserved in the plant flowering pathway. In this study, the maize SOC1 (ZmSOC1) gene was cloned and overexpressed in transgenic maize Hi-II genotype. The T0 plants were backcrossed with nontransgenic inbred B73 to produce first generation backcross (BC1) seeds. Phenotyping of both transgenic and null segregant (NT) BC1 plants was conducted in three independent experiments. The BC1 transgenic plants showed new attributes such as increased vegetative growth, accelerated flowering time, reduced overall plant height, and increased grain weight. Second generation backcross (BC2) plants were evaluated in the field using two planting densities. Compared to BC2 NT plants, BC2 transgenic plants, were 12-18% shorter, flowered 5 days earlier, and showed no reduction in grain production per plant and an increase in fat, starch, and simple sugars in the grain. Transcriptome comparison in young leaves of 56-day-old BC1 plants revealed that the overexpressed ZmSOC1 resulted in 107 differentially expressed genes. The upregulated transcription factor DNA BINDING WITH ONE FINGER 5.4 (DOF5.4) was among the genes responsible for the reduced plant height. Modulating expression of SOC1 opens a new and effective approach to promote flowering and reduce plant height, which may have potential to enhance crop yield and improve grain quality.


Assuntos
Proteínas de Domínio MADS/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Zea mays/genética , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Flores/genética , Regulação da Expressão Gênica de Plantas , Fenótipo , Plantas Geneticamente Modificadas , Sementes/genética
14.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33585867

RESUMO

High-dimensional and high-throughput genomic, field performance, and environmental data are becoming increasingly available to crop breeding programs, and their integration can facilitate genomic prediction within and across environments and provide insights into the genetic architecture of complex traits and the nature of genotype-by-environment interactions. To partition trait variation into additive and dominance (main effect) genetic and corresponding genetic-by-environment variances, and to identify specific environmental factors that influence genotype-by-environment interactions, we curated and analyzed genotypic and phenotypic data on 1918 maize (Zea mays L.) hybrids and environmental data from 65 testing environments. For grain yield, dominance variance was similar in magnitude to additive variance, and genetic-by-environment variances were more important than genetic main effect variances. Models involving both additive and dominance relationships best fit the data and modeling unique genetic covariances among all environments provided the best characterization of the genotype-by-environment interaction patterns. Similarity of relative hybrid performance among environments was modeled as a function of underlying weather variables, permitting identification of weather covariates driving correlations of genetic effects across environments. The resulting models can be used for genomic prediction of mean hybrid performance across populations of environments tested or for environment-specific predictions. These results can also guide efforts to incorporate high-throughput environmental data into genomic prediction models and predict values in new environments characterized with the same environmental characteristics.


Assuntos
Interação Gene-Ambiente , Zea mays , Genótipo , Modelos Genéticos , Fenótipo , Melhoramento Vegetal
15.
Nat Commun ; 10(1): 4604, 2019 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601818

RESUMO

Meiotic crossovers (COs) play a critical role in generating genetic variation and maintaining faithful segregation of homologous chromosomes during meiosis. We develop a haplotype-specific fluorescence in situ hybridization (FISH) technique that allows visualization of COs directly on metaphase chromosomes. Oligonucleotides (oligos) specific to chromosome 10 of maize inbreds B73 and Mo17, respectively, are synthesized and labeled as FISH probes. The parental and recombinant chromosome 10 in B73 x Mo17 F1 hybrids and F2 progenies can be unambiguously identified by haplotype-specific FISH. Analysis of 58 F2 plants reveals lack of COs in the entire proximal half of chromosome 10. However, we detect COs located in regions very close to the centromere in recombinant inbred lines from an intermated B73 x Mo17 population, suggesting effective accumulation of COs in recombination-suppressed chromosomal regions through intermating and the potential to generate favorable allelic combinations of genes residing in these regions.


Assuntos
Coloração Cromossômica/métodos , Troca Genética , Haplótipos/genética , Meiose , Zea mays/genética , Cromossomos de Plantas , Hibridização in Situ Fluorescente , Oligonucleotídeos/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA
16.
Plant Sci ; 282: 23-39, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31003609

RESUMO

New types of phenotyping tools generate large amounts of data on many aspects of plant physiology and morphology with high spatial and temporal resolution. These new phenotyping data are potentially useful to improve understanding and prediction of complex traits, like yield, that are characterized by strong environmental context dependencies, i.e., genotype by environment interactions. For an evaluation of the utility of new phenotyping information, we will look at how this information can be incorporated in different classes of genotype-to-phenotype (G2P) models. G2P models predict phenotypic traits as functions of genotypic and environmental inputs. In the last decade, access to high-density single nucleotide polymorphism markers (SNPs) and sequence information has boosted the development of a class of G2P models called genomic prediction models that predict phenotypes from genome wide marker profiles. The challenge now is to build G2P models that incorporate simultaneously extensive genomic information alongside with new phenotypic information. Beyond the modification of existing G2P models, new G2P paradigms are required. We present candidate G2P models for the integration of genomic and new phenotyping information and illustrate their use in examples. Special attention will be given to the modelling of genotype by environment interactions. The G2P models provide a framework for model based phenotyping and the evaluation of the utility of phenotyping information in the context of breeding programs.


Assuntos
Genoma de Planta/genética , Melhoramento Vegetal , Interação Gene-Ambiente , Genômica/métodos , Genótipo , Fenótipo , Seleção Genética
17.
Front Big Data ; 2: 27, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33693350

RESUMO

We consider multi-response and multi-task regression models, where the parameter matrix to be estimated is expected to have an unknown grouping structure. The groupings can be along tasks, or features, or both, the last one indicating a bi-cluster or "checkerboard" structure. Discovering this grouping structure along with parameter inference makes sense in several applications, such as multi-response Genome-Wide Association Studies (GWAS). By inferring this additional structure we can obtain valuable information on the underlying data mechanisms (e.g., relationships among genotypes and phenotypes in GWAS). In this paper, we propose two formulations to simultaneously learn the parameter matrix and its group structures, based on convex regularization penalties. We present optimization approaches to solve the resulting problems and provide numerical convergence guarantees. Extensive experiments demonstrate much better clustering quality compared to other methods, and our approaches are also validated on real datasets concerning phenotypes and genotypes of plant varieties.

18.
Plant Genome ; 9(2)2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27898815

RESUMO

Germplasm architecture refers to how favorable alleles for a given trait are distributed across the genome in a germplasm collection. Our objective was to assess germplasm architecture for quantitative traits among US maize ( L.) inbreds. A total of 271 inbreds were genotyped at 28,626 single nucleotide polymorphism (SNP) loci and phenotyped for anthesis date, plant height, starch and protein concentration, and resistance to northern corn leaf blight (NCLB, caused by ). Chromosomal effects were calculated as the sum of the trait effects of SNP alleles carried on a specific chromosome by an inbred. The chromosomal effects were further decomposed into the mean effects of chromosomes, mean effects of inbreds, and chromosome × inbred effects. On average, none of the 10 maize chromosomes was particularly rich or poor in favorable quantitative trait locus (QTL) alleles. However, extreme values of chromosome × inbred effects often involved chromosomes 5 and 8 for anthesis date, chromosomes 1 and 5 for plant height, and chromosome 9 for protein concentration. Inbreds with one or two chromosomes deficient in favorable alleles were candidates for improvement via chromosome-substitution lines. Specific chromosomes for which each of five genetic backgrounds (B73, Mo17, Oh43, A321, and PH207) were rich or poor for unknown favorable alleles were also identified. Chromosomal effects varied widely even when prior association mapping in the same germplasm collection had failed to identify any QTL. Genomewide marker effects, particularly when partitioned into chromosomal effects, provide a simple way to dissect germplasm architecture for quantitative traits.


Assuntos
Cromossomos de Plantas/genética , Locos de Características Quantitativas/genética , Zea mays/genética , Mapeamento Cromossômico , Fenótipo , Sementes/genética
19.
G3 (Bethesda) ; 5(5): 819-27, 2015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25748433

RESUMO

The shoot apical meristem contains a pool of undifferentiated stem cells and controls initiation of all aerial plant organs. In maize (Zea mays), leaves are formed throughout vegetative development; on transition to floral development, the shoot meristem forms the tassel. Due to the regulated balance between stem cell maintenance and organogenesis, the structure and morphology of the shoot meristem are constrained during vegetative development. Previous work identified loci controlling meristem architecture in a recombinant inbred line population. The study presented here expanded on this by investigating shoot apical meristem morphology across a diverse set of maize inbred lines. Crosses of these lines to common parents showed varying phenotypic expression in the F1, with some form of heterosis occasionally observed. An investigation of meristematic growth throughout vegetative development in diverse lines linked the timing of reproductive transition to flowering time. Phenotypic correlations of meristem morphology with adult plant traits showed an association between the meristem and flowering time, leaf shape, and yield traits, revealing links between the control and architecture of undifferentiated and differentiated plant organs. Finally, quantitative trait loci mapping was utilized to map the genetic architecture of these meristem traits in two divergent populations. Control of meristem architecture was mainly population-specific, with 15 total unique loci mapped across the two populations with only one locus identified in both populations.


Assuntos
Estudos de Associação Genética , Meristema , Brotos de Planta , Zea mays/anatomia & histologia , Zea mays/genética , Mapeamento Cromossômico , Análise por Conglomerados , Genótipo , Fenótipo , Locos de Características Quantitativas , Característica Quantitativa Herdável , Zea mays/crescimento & desenvolvimento
20.
G3 (Bethesda) ; 4(7): 1327-37, 2014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24855316

RESUMO

The shoot apical meristem contains a pool of undifferentiated stem cells and generates all above-ground organs of the plant. During vegetative growth, cells differentiate from the meristem to initiate leaves while the pool of meristematic cells is preserved; this balance is determined in part by genetic regulatory mechanisms. To assess vegetative meristem growth and genetic control in Zea mays, we investigated its morphology at multiple time points and identified three stages of growth. We measured meristem height, width, plastochron internode length, and associated traits from 86 individuals of the intermated B73 × Mo17 recombinant inbred line population. For meristem height-related traits, the parents exhibited markedly different phenotypes, with B73 being very tall, Mo17 short, and the population distributed between. In the outer cell layer, differences appeared to be related to number of cells rather than cell size. In contrast, B73 and Mo17 were similar in meristem width traits and plastochron internode length, with transgressive segregation in the population. Multiple loci (6-9 for each trait) were mapped, indicating meristem architecture is controlled by many regions; none of these coincided with previously described mutants impacting meristem development. Major loci for height and width explaining 16% and 19% of the variation were identified on chromosomes 5 and 8, respectively. Significant loci for related traits frequently coincided, whereas those for unrelated traits did not overlap. With the use of three near-isogenic lines, a locus explaining 16% of the parental variation in meristem height was validated. Published expression data were leveraged to identify candidate genes in significant regions.


Assuntos
Meristema/química , Zea mays/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Variação Genética , Meristema/genética , Meristema/metabolismo , Fenótipo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Locos de Características Quantitativas , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...